* Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(x,y,s(z)) -> s(f(0(),1(),z)) f(0(),1(),x) -> f(s(x),x,x) g(x,y) -> x g(x,y) -> y - Signature: {f/3,g/2} / {0/0,1/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {0,1,s} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak innermost dependency pairs: Strict DPs f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) g#(x,y) -> c_3() g#(x,y) -> c_4() Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) g#(x,y) -> c_3() g#(x,y) -> c_4() - Strict TRS: f(x,y,s(z)) -> s(f(0(),1(),z)) f(0(),1(),x) -> f(s(x),x,x) g(x,y) -> x g(x,y) -> y - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) g#(x,y) -> c_3() g#(x,y) -> c_4() * Step 3: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) g#(x,y) -> c_3() g#(x,y) -> c_4() - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3,4} by application of Pre({3,4}) = {}. Here rules are labelled as follows: 1: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) 2: f#(0(),1(),x) -> c_2(f#(s(x),x,x)) 3: g#(x,y) -> c_3() 4: g#(x,y) -> c_4() * Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) - Weak DPs: g#(x,y) -> c_3() g#(x,y) -> c_4() - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) -->_1 f#(0(),1(),x) -> c_2(f#(s(x),x,x)):2 -->_1 f#(x,y,s(z)) -> c_1(f#(0(),1(),z)):1 2:S:f#(0(),1(),x) -> c_2(f#(s(x),x,x)) -->_1 f#(x,y,s(z)) -> c_1(f#(0(),1(),z)):1 3:W:g#(x,y) -> c_3() 4:W:g#(x,y) -> c_4() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: g#(x,y) -> c_4() 3: g#(x,y) -> c_3() * Step 5: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) Consider the set of all dependency pairs 1: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) 2: f#(0(),1(),x) -> c_2(f#(s(x),x,x)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {1} These cover all (indirect) predecessors of dependency pairs {1,2} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. ** Step 5.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1} Following symbols are considered usable: {f#,g#} TcT has computed the following interpretation: p(0) = [1] p(1) = [1] p(f) = [1] x1 + [0] p(g) = [1] x1 + [0] p(s) = [1] x1 + [6] p(f#) = [4] x3 + [1] p(g#) = [2] x2 + [8] p(c_1) = [1] x1 + [7] p(c_2) = [1] x1 + [0] p(c_3) = [1] p(c_4) = [0] Following rules are strictly oriented: f#(x,y,s(z)) = [4] z + [25] > [4] z + [8] = c_1(f#(0(),1(),z)) Following rules are (at-least) weakly oriented: f#(0(),1(),x) = [4] x + [1] >= [4] x + [1] = c_2(f#(s(x),x,x)) ** Step 5.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(0(),1(),x) -> c_2(f#(s(x),x,x)) - Weak DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ** Step 5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) f#(0(),1(),x) -> c_2(f#(s(x),x,x)) - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) -->_1 f#(0(),1(),x) -> c_2(f#(s(x),x,x)):2 -->_1 f#(x,y,s(z)) -> c_1(f#(0(),1(),z)):1 2:W:f#(0(),1(),x) -> c_2(f#(s(x),x,x)) -->_1 f#(x,y,s(z)) -> c_1(f#(0(),1(),z)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: f#(x,y,s(z)) -> c_1(f#(0(),1(),z)) 2: f#(0(),1(),x) -> c_2(f#(s(x),x,x)) ** Step 5.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {f/3,g/2,f#/3,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))